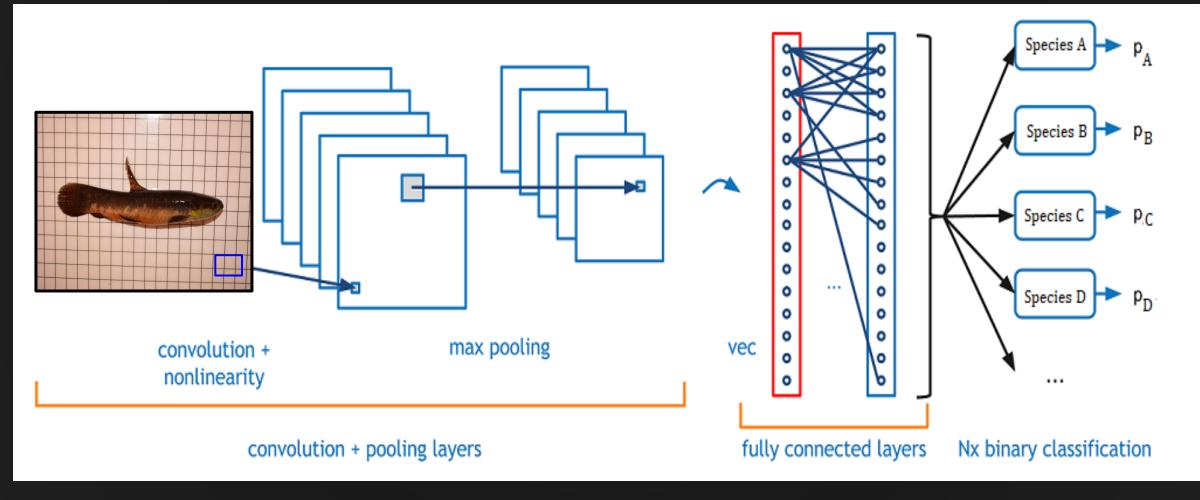
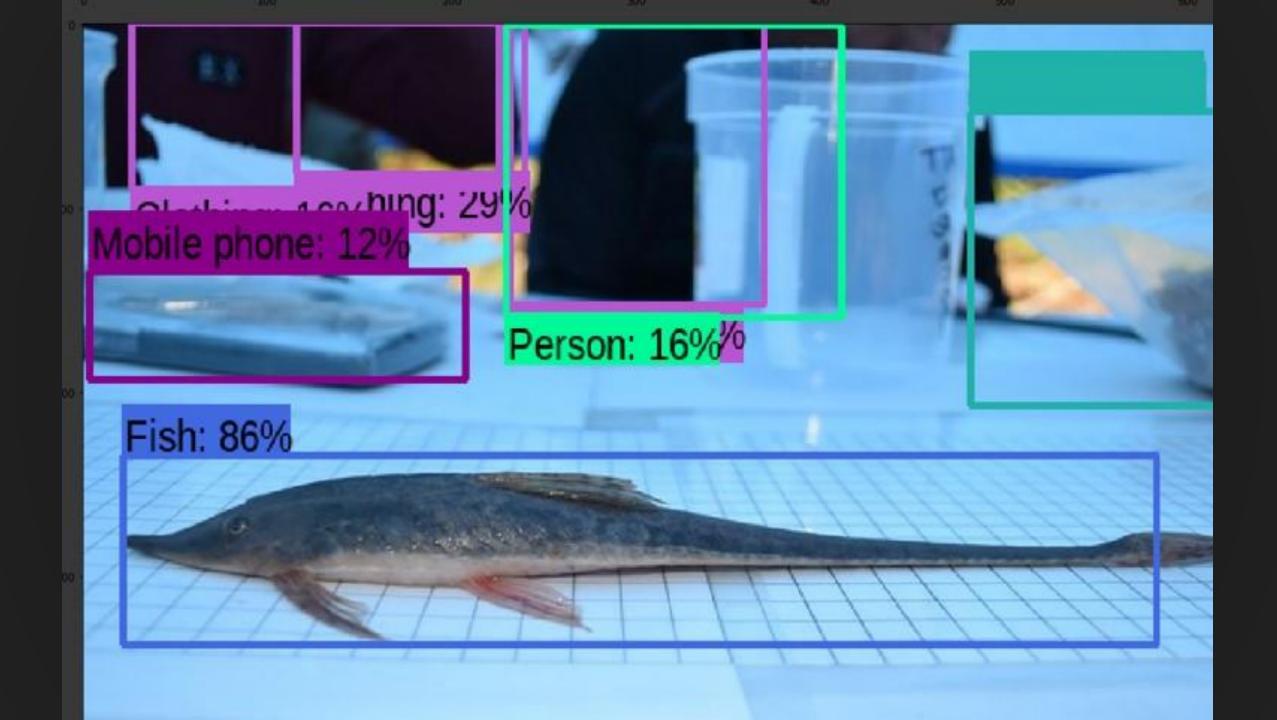

Smithsonian

© Ginko Map Project

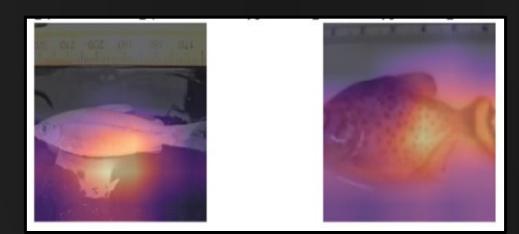

Machine Learning

****** Smithsonian


Image Credit Adam Geitgey

Convolutional Neural Networks

****** Smithsonian


Image Credit Adit Deshpande

Results

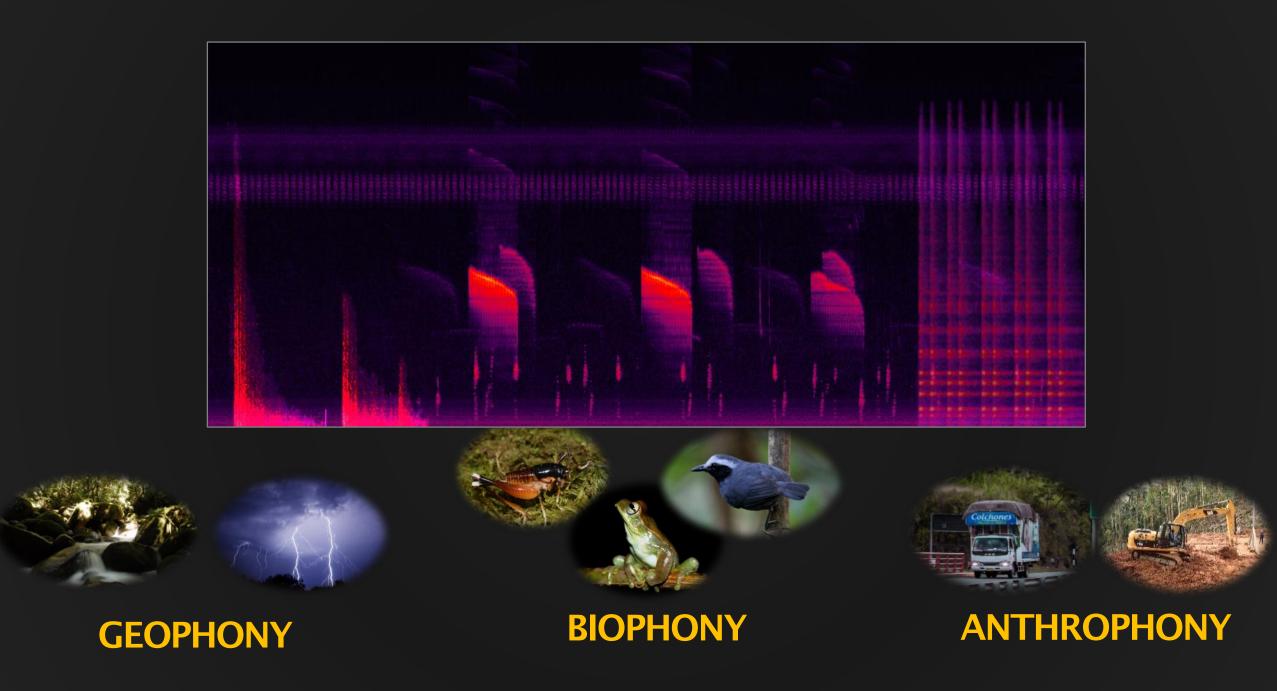
- 3,144 images
- 33 genera
- 88-99% accuracy

Ancistrus 1	10	0	0	0	0	0	0	0	0	Cor	fus	ion	ma	trix	0	0	0	٥	0	0	0	0	-0-
Apistogramma -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
Astyanax -	0	0	4	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	1	0	0	0
Bujurquina -	0	0	0	9	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Characidium -	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
Copella -	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corydoras -	0	0	0	0	0	0	6	0	0	1	1	0	1	0	0	0	0	0	0	0	2	0	0
Curimata -	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Doras -	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Erythrinus -	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	1	0	0	0	0	0	0
Hemigrammus -	0	0	0	0	1	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
Hyphessobrycon -	0	0	0	0	1	0	0	0	0	0	1	15	0	1	0	0	0	0	0	0	0	0	0
≪ Moenkhausia -	0	0	0	0	0	0	1	0	0	0	1	2	11	0	0	2	0	0	0	1	0	0	0
Otocinclus -	0	0	0	0	2	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	1	0	0
Oxyropsis -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
Phenacogaster -	0	0	0	0	1	0	1	0	0	0	0	2	0	0	0	4	0	0	0	0	0	0	0
Pimelodella -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	1	2	0	0
Prochilodus -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0	0
Pygocentrus -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0
Pyrrhulina -	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	10	0	0	0
Rineloricaria -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
Tatia -	1	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	2	3	0
Tyttocharax -	n Ö	0 m	• ×	0	F	e n	0	0 m	0 0	0	0	• c	0 m	0	0	0	0 m	<u>ф</u>	0	0 0	0 m	0 D	8 X
	Ancistrus	Apistogramma	Astyanax	Bujurquina	Characidium	Copella	Corydoras	Ourimata	Doras	Erythrinus	Hemigrammus	Hyphessobrycon	A Moenkhausia	Otocinclus	Oxyropsis	Phenacogaster	Rimelodella	Prochilodus	Pygocentrus	Pyrrhulina	Rineloricaria	Tatia	Tyttocharax.

Benefits

- Standardized community monitoring approaches
- Reduces bias in species identification
- Considerations
- Take more photos, please!
- Requires technical capacity to develop model

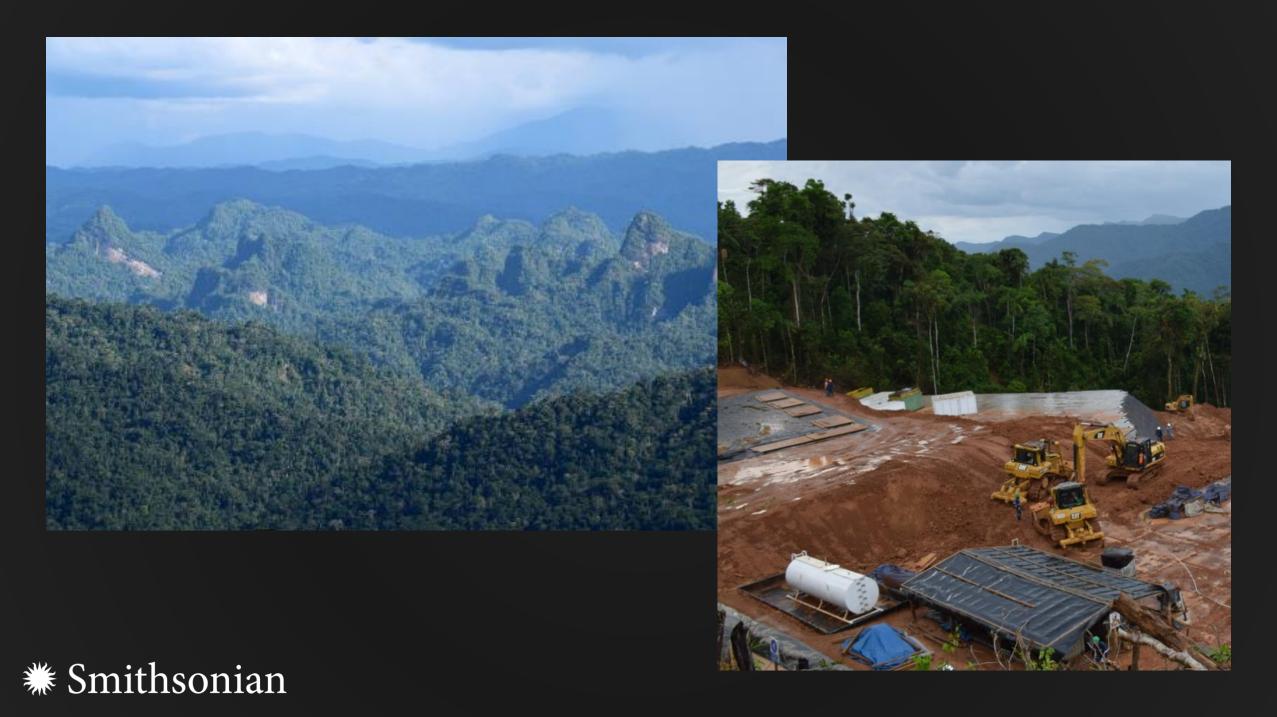
Questions

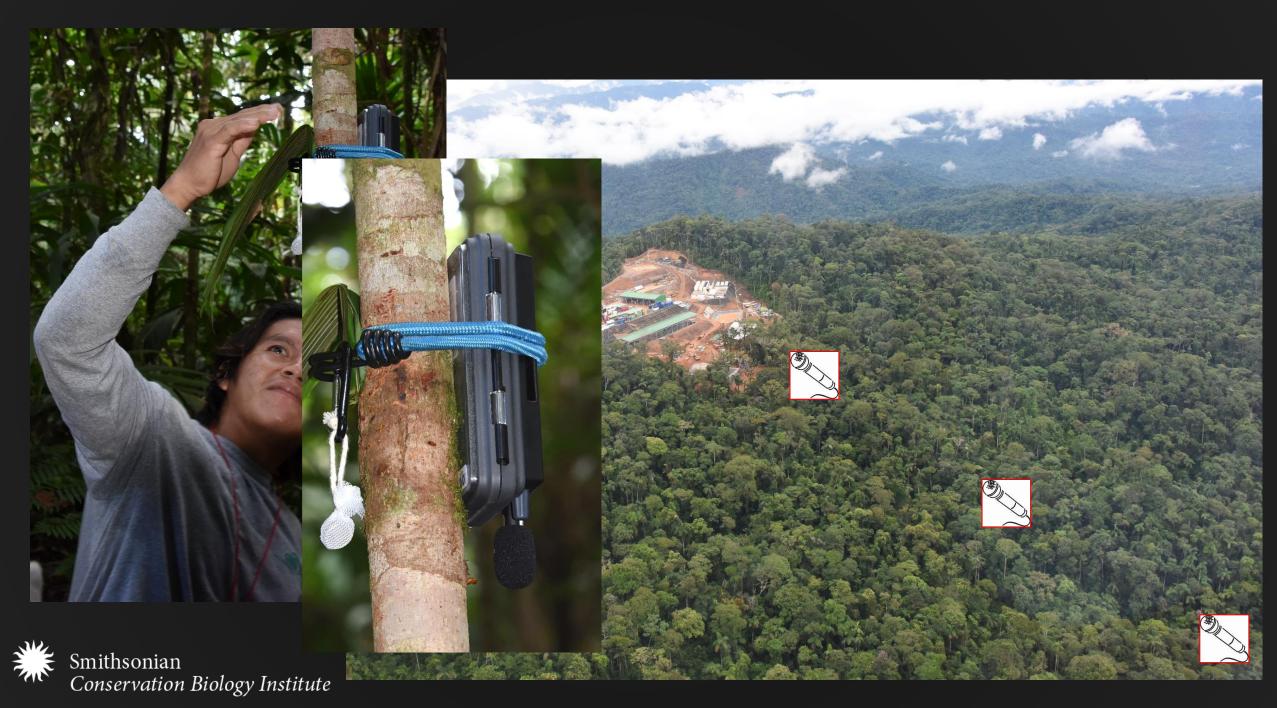

****** Smithsonian

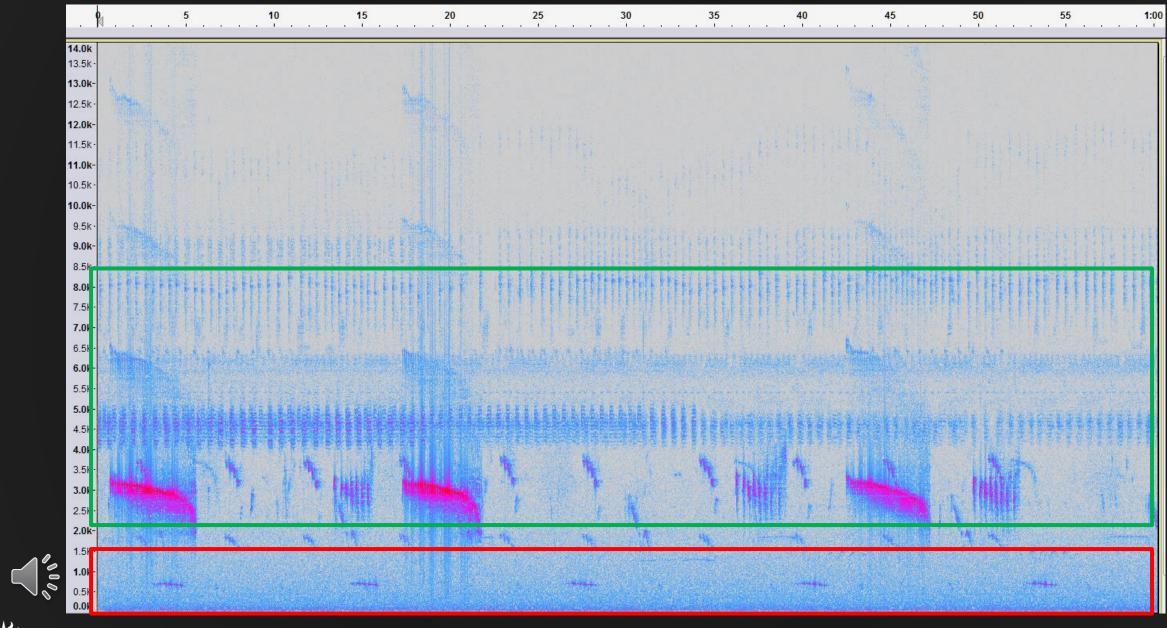
Sound Classification

****** Smithsonian

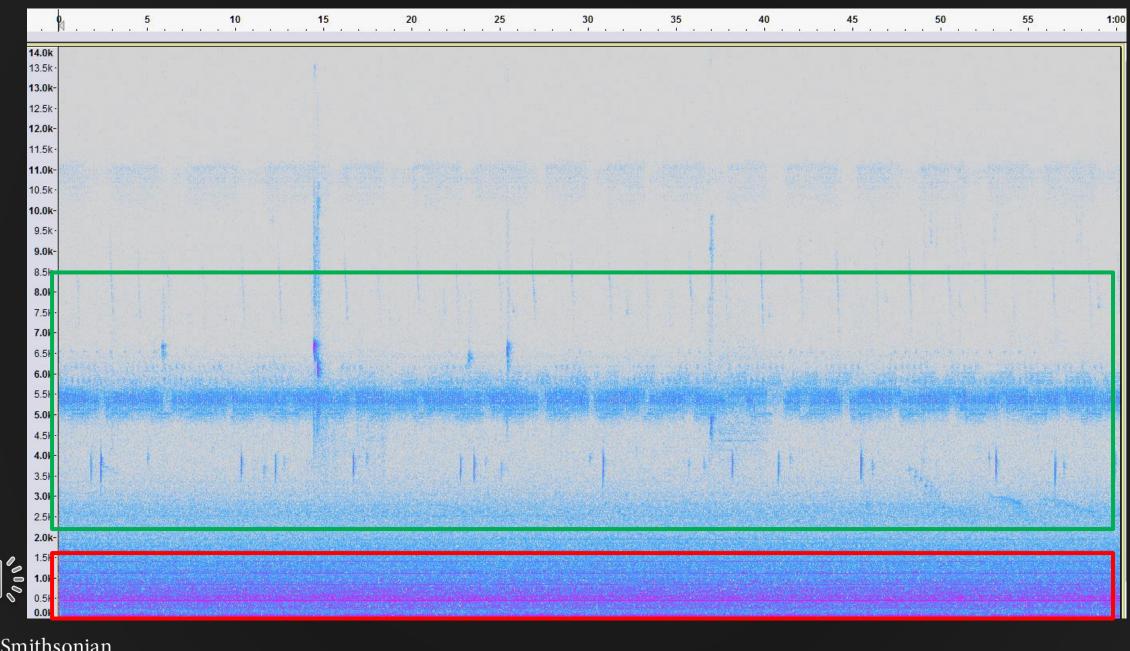
Passive Acoustic Monitoring







Smithsonian

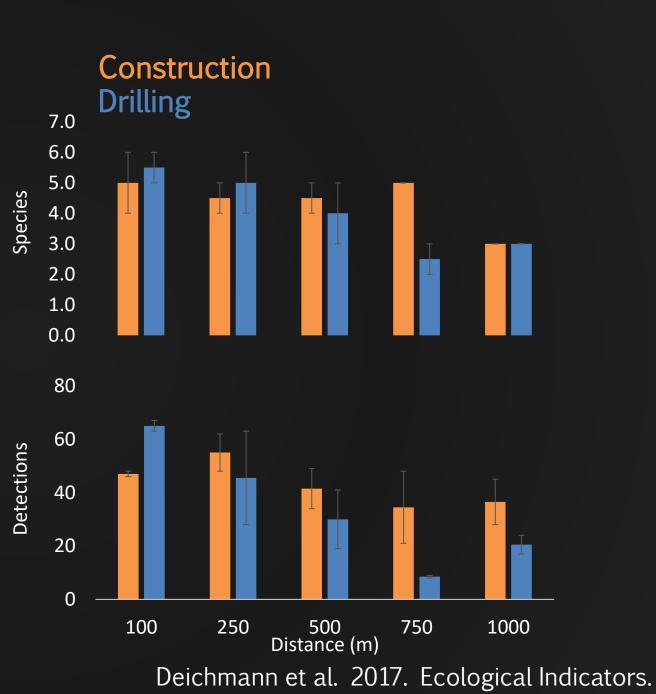

© Ginko Map Project

Smithsonian Conservation Biology Institute

Smithsonian Conservation Biology Institute

Analysis

- >100,000 recordings
- Storage, visualization and analysis with Arbimon
- Manual revision
- Classification and focal species analysis
- Soundscape


$\leftrightarrow \rightarrow G$ O	https://arbimon. rfcx.o	rg/project/smith	nsonian-wandari-	project/visua	lizer/rec/11	8094				☆		⊚ ⊻	II 🔓
Smith My Projects Smith	hsonian Wandari Project	n Summary	🚯 Data 🛛 🚳 V	′isualizer <	🛛 Analysis	\$ Jobs 473	₽ Setting	zs					
♀	^ Feb 9, 2015 -	22 - 24 kHz Cl 20 -	scale Original scal ick to set current	e (22.05 kHz) play time to	49.66s				Halikatak		3)	Seleti	•
1000A Feb 9, 2015 5:30 AM		18 - 16 -	i.					4	W.	-	iii.		
1000A, Feb 9, 2015 5:40 AM	► 8.73 s	14 - 72 - 72 - 71 -											- @ Ø @
H II II H 40, T_ ±	► 8.73 s 49.66 s, 22.1 kHz	E 10-	Ŵ.		1	1111			-	-	-	-	
✓ Recording Tags 1000A-2015-02-09_05-30.flac		6 -	Ha Kirki waxaa waxaa				Welle He	Heldrid	小市市市市		i pi biki samuta		1993 Malaza
Add new tag to recording or annotate spe	ectrogram	4 -		eta se este a eta se este a eta se este a eta se este a	1 			118-118 118 124 14 14 18 19 1		a series a s		n genere in ne	entra a terre La constante
Species Presence Validation	₹0/x0 ⊚	2 -			1 1 smp.			T tripmi	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	111	M	Passing and	t tran
➤ Training Sets (RF Algorithm)			3 4 5 6 7 8	9 10 11 12 13	14 15 16 17	18 19 20 21 22 2	3 24 25 26 27 2	8 29 30 31 32 33 3	34 35 36 37 38 39 40 41 4	2 43 44 45 46 47 4	8 49 50 51 52	53 54 55 56	57 58 59 60
Templates (Pattern Matching Analysis)							Ti	me(s)					

https://arbimon.rfcx.org/

Results - Manual

- 12 amphibian species (600 dusk recordings)
- Distance from platform

